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Abstract. We study the relationship between finite volume and mixed finite
element methods for the the hyperbolic conservation laws, and the closely
related convection-diffusion equations.A general framework is proposed for
the derivation and a functional framework is developed which could allow
the analysis of relating finite volume (FV) schemes. We show via two non-
standard formulations, that numerous FV schemes, including centred, up-
wind, Lax-Friedrichs, Roe, Engquist-Osher, the central Nessyahu-Tadmor
schemes, etc., can be recovered in the unique dual mixed and hybrid (DMH)
finite element framework. That makes possible a better understanding of
these FV schemes. Moreover, the large number of DMH finite element re-
sults available can then give the analysis of these FV methods in a unified
fashion. Furthermore, stabilized methods are proposed. In particular, inter-
pretation in terms of the Lagrange multiplier of flux-limiter is given.

We end by presenting numerical results to validate the newly proposed
stabilized schemes.

1 Introduction

Mixed formulations for performing finite element approximations of partial
differential equations are appealing from a theoretical point of view, since
a standard framework and large number of results are available for carrying
out their analysis.
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In other respects, mixed finite element methods have been proved effec-
tive for a number of engineering problems. They provide good and efficient
approximations to stress variables, have the capability of dealing with rough
coefficients, and are the natural choice for equations coupling velocity and
pressure or stress and displacement variables. Nevertheless, a popular and
more appropriate method for discretization of conservation laws is still the
FV method, used extensively in computational fluid dynamics (CFD), ba-
sed on piecewise constant approximation of the solution. The FV method is
widely used in applications because of its great ability in handling the con-
vective terms in particular; it also insures the local conservation of physical
quantities. However, the FV method has problems with the approximation
of diffusion terms; the analysis and the extension to the multidimensional
setting are not standardized, and these schemes are sensitive to the trian-
gulation of the domain (convergence problems on elements with arbitrarily
large aspect ratios, so-called anisotropic finite element meshes).

Furthermore, for the diffusion problem, the relationship between mixed
finite element methods and finite volume was established among others by
Farhloul and Fortin [23] (rectangular case), and Baranger et al. [7] (triangular
case). This paper extends this connection, presenting a general framework
for the derivation and a functional framework for the analysis of finite vo-
lume schemes, applied to the discretization of general conservation laws.
The procedure is based on a dual mixed and hybrid (DMH) finite element
formulation, and its connection with the FV method for nonlinear hyperbolic
conservation laws,

∂u

∂t
+ ∂f (u)

∂x
= 0, (1)

and the closely related convection-diffusion equations,

∂u

∂t
+ ∂f (u)

∂x
= ν

∂2u

∂x2
, (2)

with given data u(x, 0) = u0(x) and corresponding suitable boundary
conditions. Here u := u(x, t) is a conserved quantity, f (u) is a convective
flux, and ∂u

∂x
is a dissipation flux.

These equations are of great practical importance since they arise in
fluid flows, reactive flows, groundwater flows, non-Newtonian flows, traffic
flows, two-phase flows in oil reservoirs, etc. They also govern a variety of
physical phenomena that appear in aeronautics, astrophysics, meteorology,
semiconductors, financial modelling, front propagation, and other areas.

The numerical solution of the advective-diffusive transport equation is
a problem of great importance because many problems in science and en-
gineering involve such mathematical models. When the process is advection
dominated, the problem is especially difficult.
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On the other hand, the discrete conservation of a numerical algorithm for
(1) or (2) is important in order to keep the correct location of the discontinui-
ties. Hou and LeFloch in [36] have shown that, if a nonconservative scheme
for (1.1) converges, it converges to a solution of ∂tu + ∂xf (u) = µ, where
µ is a Borel measure source term that is expected to be zero in the region
where the solution u is smooth and concentrated where u is not smooth.
Then the schemes insuring the local conservation are in order.

To achieve this, a mixed method is considered for this work because it
conserves mass on a cell-by-cell basis. Next, the convective and diffusion
fluxes are introduced as auxiliary variables, and Lagrange multipliers are
used to impose interelement continuity.

In this first paper, we start with the one-dimensional problem and extract
the principal properties of the approach, and we explain how some of the
classical volume schemes can be derived in a simple and systematic manner.
The extension of the methods to multidimensional hyperbolic and the related
convection-diffusion equations, and also to the Navier-Stokes equations, will
be the subject of other papers.

This paper is organized as follows. We start in the next section with the
one-dimensional problem. In Sect. 2.1, first, we introduce the convective
and diffusion fluxes as auxiliary variables in each cell. Second, we relax
the continuity of the fluxes across the interelement via two Lagrange multi-
pliers, to obtain the abstract dual mixed and hybrid (DMH1) formulation. In
Sect. 2.2, we extend the above approach; this yields the DMH2 formulation.
The finite element discretization of the two methods and a few remarks are
given in Sect. 3. In Sect. 4, we show how to obtain finite volume schemes
from DMH finite element methods. Stabilized methods are reported in Sect.
5 because we are concerned with the numerical approximation of the solu-
tions of convection-diffusion problems in which the convection or transport
dominates the diffusion. The first combines the upwind feature without the
complicated and costly resolution of Riemann problems. The last utilizes
the limiter-flux strategy.

In Sect.6, we discuss how we can establish the extension of the (DMH2)
method to both convection-diffusion equations and systems of equations. We
end by presenting numerical results to validate the newly proposed schemes.

2 Dual mixed and hybrid finite element methods

2.1 Formulation 1

We begin this section by considering the simple one-dimensional model to
extract the fundamental points.

Throughout the paper, for a bounded interval I = (a, b) of R, we set
IT = I × (0, T ], with T > 0 denoting the final time; let L2(I ) and
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H 1(I ) (H 1(I ) ⊂ C(I)) be the usual Lebesgue space and Sobolev space,
respectively.

We next consider the initial-boundary value problem:
find u : IT → R such that

∂u

∂t
− ν

∂2u

∂x2
+ ∂(f (u))

∂x
= 0 in IT ,

u(x, 0) = u0(x) in I,

(3)

with corresponding suitable boundary conditions.
If we introduce the dissipation and the convective fluxes as new unkno-

wns, then problem (3) can be formulated as
∂u

∂t
− ν

∂p

∂x
+ ∂p̂

∂x
= 0 in IT ,

p = ∂u

∂x
in I,

p̂ = f (u) in I,

with given initial data u(x, 0) = u0(x), and corresponding suitable bound-
ary conditions.

In order to describe our formulation of the above problem, we start
by introducing more notation. Consider an arbitrary partition of I into N

subintervals Ii = {x ∈ I | xi < x < xi+1} of length hi := xi+1 − xi

with i = 0, 1, . . . , N . We also consider a time step �t and define the times

tn = n�t , for n = 1, 2, . . . , M; by �t , we mean �t = T

M
. Moreover, we

also need the spaces:

M2 = {
µ : {x0, x1, . . . , xN+1} → R

}
,

M2 = {
µ ∈ M2 | µ0 = µN+1 = 0

}
,

M1 = L2(I )

and
X = {

q ∈ L2(I ), q|Ii
∈ H 1(Ii)

}
.

The hybridization of the mixed formulation can be obtained by relaxing
the continuity of p and p̂ across interelement boundaries, with Lagrange
multipliers λ and λ̂ respectively:∑

i

∫
Ii

pqdx = −
∑

i

∫
Ii

u
dq

dx
dx

+
∑

i

(
λi+1q(x−

i+1) − λiq(x+
i )

) ∀ q ∈ X,
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and ∑
i

∫
Ii

p̂ q dx =
∑

i

∫
Ii

f (u) q dx

+
∑

i

(
λ̂i+1 q(x−

i+1) − λ̂iq(x+
i )

) ∀ q ∈ X,

for 0 ≤ i ≤ N , and where

u = 1

�t

∫ tn+1

tn
u dt, f (u) = 1

�t

∫ tn+1

tn
f (u) dt,

and q(x∓
i ) are the left and right traces of q at xi

(
q(x±

i ) := limε−→0 q(xi ±
ε)

)
. We then obtain the conservation of diffusion and convective fluxes in

each cell. This completes the construction of our formulation. Moreover,
note that λ could be interpreted as a trace of u in each subinterval Ii of
I . Further, we will demonstrate the capital importance of the Lagrange
multiplier λ̂ in the numerical scheme.

Finally, let un := u(., tn); after the time discretization, the DMH1 for-
mulation for (3) reads as follows.

For each n = 0, 1, . . . , M−1, find
(
un+1, (λ, λ̂)

) ∈ M1×M
2
2, and (p, p̂) ∈

X2 such that:

∑
i

∫
Ii

un+1 − un

�t
v dx − ν

∑
i

∫
Ii

dp

dx
v dx

+
∑

i

∫
Ii

dp̂

dx
v dx = 0, ∀ v ∈ M1

∑
i

∫
Ii

pq dx = −
∑

i

∫
Ii

u
dq

dx
dx +

∑
i

(
λi+1q(x−

i+1)

− λiq(x+
i )

) ∀ q ∈ X,∑
i

∫
Ii

p̂ q dx =
∑

i

∫
Ii

f (u) q dx +
∑

i

(
λ̂i+1 q(x−

i+1)

− λ̂iq(x+
i )

) ∀ q ∈ X,∑
i

(p(x+
i ) − p(x−

i )) µ = 0 ∀ µ ∈ M2,∑
i

(p̂(x+
i ) − p̂(x−

i )) µ = 0 ∀ µ ∈ M2,

(4)

for 0 ≤ i ≤ N , with given data u(x, 0) = u0(x) and corresponding suitable
boundary conditions, λi = λ(xi) and λ̂i = λ̂(xi).
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This may look like a complicated way of discritizing a simple problem.
We shall see that it enables us to interpret some standard schemes, in parti-
cular flux limiter schemes, in terms of mixed methods.

2.2 Formulation 2

In order to extend the above approach, and to introduce the fundamental
concepts of the proposed methodology, we restrain ourselves to transport
equations. In Sect. 6, we discuss the extension of this approach to convection-
diffusion equations and systems of equations. With this aim, we first intro-
duce the hyperbolic conservation law with convex flux:

∂u

∂t
+ ∂

(
f (u)

)
∂x

= 0 ∀ x ∈ R × (0, +∞),

u0(x) = u(x, 0) ∀ x ∈ R.

(5)

Problem (5) may have discontinuous solutions (shocks) depending on the
initial data u0. Consider functions defined in a region � (space-time space),
which may have jump discontinuities across an internal boundary �. In
the finite element methods, � could be the union of all the inter-element
boundaries in the space-time space (� = ∪�i). If we can determine the
trajectory � of a shock x(t), then the shock solution is defined as

u(x, t) =
{

uL(x, t) if x < x(t),

uR(x, t) if x > x(t).

Shock solutions can be defined as weak solutions in the sense of distributions
(Smoller [66]). It can be shown that the shock x(t) must satisfy the Rankine-
Hugoniot jump condition (RH),

−νx

νt

[u] = [f (u)]. (6)

Here ν is normal to the shock, it has components νx = − dx
dt

(for convenience
νx is oriented from left to right), νt = 1, and s = dx

dt
is the shock speed.

The square brackets stand for the jumps across �, [u] = u
(
x(t)+, t

) −
u
(
x(t)−, t

) ([f (u)] = f (u(x(t)+, t)) − f (u(x(t)−, t))
)
, i.e., the limit on

the positive side minus the limit on the negative side.
First, we start by assuming in our approach that the solution has discon-

tinuities at each boundary of every Ii . Therefore, we have, in the usual sense
in � \ (∪�i), the equation:

∂u

∂t
+ ∂(p̂)

∂x
= 0 ∀ x ∈ Ii × (0, +∞),

u0(x) = u(x, 0) ∀ x ∈ Ii,
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where we again set p̂ = f (u) in each Ii . Next, on �i , we have the jump
formula (6).

Then, we suggest that the jump condition should be imposed on the
numerical flux through element interfaces. This follows from the fact that, in
the special case where u(x−

i , t) and u(x+
i , t) are connected by a single shock

wave or contact discontinuity, the RH condition is satisfied for u(x−
i , t) and

u(x+
i , t) for some speed s (the speed of the shock or contact).
As a second ingredient in the construction, this jump condition is en-

forced in a weak form by a Lagrange multiplier technique. In fact, if we
restrict to right-going propagation, and for a given approximation of the
local propagation speeds ai (ai ≥ 0) at the cell boundaries xi (for left-going
propagation we take ai < 0), we have∑

i

(
p̂(x+

i ) − p̂(x−
i )

)
µ =

∑
i

ai (u
+
i − u−

i ) µ ∀ µ ∈ M2. (7)

We again denote by p̂(x∓
i ) (resp. u∓

i )) the corresponding left and right traces
of p̂ (resp. u) at xi ; here ai also stands for a viscosity distribution, and each
choice of ai corresponds to a different scheme. Furthermore, as we shall see
in Sect. 4, for appropriate choices of this parameter we can recover many
standard finite volume schemes. Of course, the choice of ai has a strong
impact on the accuracy and the stability of the scheme.

Note that the condition (7) reduces to∑
i

(
p̂(x+

i ) − p̂(x−
i )

)
µ = 0 ∀ µ ∈ M2, (the last equation of (4))

in the case where ai = 0 or if the function u is continuous at nodes xi .
Henceforward, we consider that xi and xi+1 are the upstream and the

downstream of Ii respectively. Then we define our dual mixed and hybrid
finite element method (DMH2) for (5) as follows.

For each n = 0, 1, . . . , M − 1, find (un+1, λ̂) ∈ M1 × M2, and p̂ ∈ X

such that:

∑
i

∫
Ii

un+1 − un

�t
v dx +

∑
i

∫
Ii

dp̂

dx
v dx = 0 ∀ v ∈ M1,∑

i

∫
Ii

p̂ q dx =
∑

i

∫
Ii

f (u) q dx +
∑

i

(
λ̂i+1 q(x−

i+1)

− λ̂iq(x+
i )

) ∀ q ∈ X,∑
i

(
p̂(x+

i ) − p̂(x−
i )

)
µ =

∑
i

ai(u
+
i − u−

i ) µ ∀ µ ∈ M2,

(8)

for 0 ≤ i ≤ N . In addition, Eq. (7) can be regarded as the Rankine-Hugoniot
jump condition at xi .
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3 Spatial discretization

In this section, we describe how to derive discrete formulations of the method
suggested above.

3.1 Scheme 1

Since we seek a solution u in L2(I ), p and p̂ in X and (λ, λ̂) in M
2
2, the

choice of functional discrete spaces is M1h ⊂ M1, Xh ⊂ X and M2h ⊂ M2,
with the spaces defined as

M1h = {
vh ∈ L2(I ); vh|(xi ,xi+1) ∈ P0(Ii), 0 ≤ i ≤ N

}
,

Xh = {
qh ∈ X; qh|(xi ,xi+1) ∈ P1(Ii), 0 ≤ i ≤ N

}
,

M2h = {
µ : {x0, x1, . . . , xN+1} → R

}
,

where Pk(Ii) denotes the space of all polynomials of degree k
(
k ∈ {0, 1})

over the interval Ii , and M2h is the global space for the interface unknowns,
where functions are defined only at the nodes

{
xi

}N+1
i=0 .

Using basic algebraic manipulations, we define the contribution of each
element within the fully discrete variational formulation:

∫
Ii

un+1
h − un

h

�t
vh dx − ν

∫
Ii

dph

dx
vh dx +

∫
Ii

dp̂h

dx
vh dx = 0 ∀ vh ∈ M1h,

∫
Ii

phqhdx = −
∫

Ii

uh

dqh

dx
dx + (

λi+1qh(x
−
i+1) − λiqh(x

+
i )

) ∀ qh ∈ Xh,∫
Ii

p̂h qh dx =
∫

Ii

f (uh) qh dx + (
λ̂i+1 qh(x

−
i+1) − λ̂iqh(x

+
i )

) ∀ qh ∈ Xh,

(9)

for 0 ≤ i ≤ N and with continuity equations of diffusion and convective
fluxes. We have then the following expression of ph in Ii :

ph(x) = λi+1 − λi

hi

+ 6
(λi+1 − 2ui+1/2 + λi)

h2
i

(
x − xi+ 1

2

)
,

and the expression of the numerical convective flux p̂h in Ii :

p̂h(x) = f (ui+1/2) + λ̂i+1 − λ̂i

hi

+ 6
λ̂i+1 + λ̂i

h2
i

(
x − xi+ 1

2

)
,

where ui+1/2 = uh(xi+1/2) and xi+1/2 = 1
2 (xi + xi+1).
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Thanks to the expressions of diffusion ph and convective p̂h fluxes and
continuity equations of ph and of p̂h, we obtain the scheme:

un+1
i+1/2 − un

i+1/2

�t
− 6ν

λi+1 − 2ui+1/2 + λi

h2
i

+ 6
(λ̂i+1 + λ̂i)

h2
i

= 0,

and the continuity equations of ph and p̂h at node xi are given by

2

hi−1
λi−1 +

(
4

hi−1
+ 4

hi

)
λi + 2

hi

λi+1 = 6

hi−1
ui−1/2 + 6

hi

ui+1/2,

2

hi−1
λ̂i−1 +

(
4

hi−1
+ 4

hi

)
λ̂i + 2

hi

λ̂i+1 = f (ui+1/2) − f (ui−1/2)

for each n = 0, 1, . . . , M − 1, and 0 ≤ i ≤ N.

The last two equations express continuity of the fluxes ph and p̂h at the
interfaces of the cells.

Some remarks are in order.

– Note that since the solution is completely discontinuous, we can eliminate
it element by element.

– The present scheme is an implicit, centered and second-order scheme.
– The consistency and conservativity of the scheme are evident.

Remark 1 If we want to obtain the upwind scheme, we have to impose the
continuity of the convective flux only on the upstream boundary xi of each
interval Ii (we always assume that we have a right-going wave). For this
purpose we use

c
(
(p̂h, λ̂); qh

) : =
∫

Ii

p̂h qh dx

−
∫

Ii

f (uh) qh dx + λ̂iqh(x
+
i ) = 0 ∀qh ∈ Xh.

As above, we get the following upwind scheme:

• equation of conservation of the system (9):

un+1
i+1/2 − un

i+1/2

�t
− 6ν

λi+1 − 2ui+1/2 + λi

h2
i

+ 6
λ̂i

h2
i

= 0;

• continuity equation of the convective flux at xi :

2

hi−1
λ̂i−1 + 4

hi

λ̂i = f (ui+1/2) − f (ui−1/2).
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It is evident that the continuity equation of diffusion flux stays unchanged.
Note also that the approximation of p̂ depends only on λ̂i (we have dropped
the parameter λ̂i+1, insuring the continuity of the convective flux at the
downstream boundary xi+1 of Ii). For a generalization of this formulation
one can see Serghini Mounim [64].

3.2 Scheme 2

In order to construct the approximation of our DMH2 formulation, we keep
the above choice of discrete functional spaces M1h, M2h and Xh. Starting
from (8), and after a few basic calculations, we obtain the following scheme:

un+1
i+1/2 − un

i+1/2

�t
+ 6

(λ̂i+1 + λ̂i)

h2
i

= 0,

2

hi−1
λ̂i−1 +

(
4

hi−1
+ 4

hi

)
λ̂i + 2

hi

λ̂i+1 = f (ui+1/2) − f (ui−1/2)

− ai(ui+1/2 − ui−1/2)

for each n = 0, 1, . . . , M − 1, and 0 ≤ i ≤ N.

Observe that the last equation expresses the RH condition of p̂ at the bo-
undary xi , and the expression for p̂h in Ii is given as

p̂h(x) = f (ui+1/2) + λ̂i+1 − λ̂i

hi

+ 6
λ̂i+1 + λ̂i

h2
i

(x − xi+ 1
2
).

Note, also, that, since the solution is completely discontinuous, we can
eliminate it, element by element and, hence, reduce the number of degrees
of freedom.

4 Relationship with finite volume methods

In this section, we show how to obtain finite volume schemes from the mixed
and hybrid finite element methods DMH1 and DMH2.

4.1 DMH1

To this end, we use the trapezoidal quadrature formula to approximate the

terms
∫

Ii

lj lk dx, j, k ∈ {i, i + 1} (coefficients of the local mass matrix, li
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are the standard hat functions). This beneficially uncouples the equations as
we shall see. We first recall the equations of the numerical scheme:

∫
Ii

un+1
h − un

h

�t
vh dx − ν

∫
Ii

dph

dx
vh dx +

∫
Ii

dp̂h

dx
vh dx = 0 ∀vh ∈ M1h,

∫
Ii

phqhdx = −
∫

Ii

uh

dqh

dx
dx + (

λi+1qh(x
−
i+1) − λiqh(x

+
i )

) ∀qh ∈ Xh,∫
Ii

p̂h qh dx =
∫

Ii

f (uh) qh dx + (
λ̂i+1 qh(x

−
i+1) − λ̂iqh(x

+
i )

) ∀qh ∈ Xh.

To these equations we have to add the continuity conditions of fluxes ph and
p̂h. Using the trapezoidal quadrature formula and some algebra, we obtain:

un+1
i+1/2 − un

i+1/2

�t
− 2ν

λi+1 − 2ui+1/2 + λi

h2
i

+ 2
(λ̂i+1 + λ̂i)

h2
i

= 0,

and continuity of ph and p̂h at the node xi is given by(
1

hi−1
+ 1

hi

)
λi = 1

hi−1
ui−1/2 + 1

hi

ui+1/2,(
2

hi−1
+ 2

hi

)
λ̂i = f (ui+1/2) − f (ui−1/2),

0 ≤ i ≤ N.

(10)

In particular, the desired cell average numerical convective flux at the in-

terface cells of Ii− and Ii is obtained as α̂i = hi−1f (ui−1/2)+hif (ui+1/2)

hi−1+hi
. We

observe that this scheme does not contain any upwinding or artificial visco-
sity. Indeed, we have the following remark.

Remark 2 Due to the elimination of the trace of u, and of the λ̂i , at the
boundaries of Ii , the finite volume scheme obtained from (10) is:

hi

un+1
i+1/2 − un

i+1/2

�t
− ν

(
ui+3/2 − ui+1/2

hi+ 1
2

− ui+1/2 − ui−1/2

hi− 1
2

)

+ hi+1

2

f (ui+3/2) − f (ui+1/2)

hi+ 1
2

+ hi

2

f (ui+1/2) − f (ui−1/2)

hi− 1
2

= 0

for 0 ≤ i ≤ N , and where hi+ 1
2

= 1
2 (hi + hi+1), hi− 1

2
= 1

2 (hi−1 + hi),

and ui+1/2 is the unknown in interval Ii .
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Remark 3 If we consider a spatial mesh with a constant step size, i.e.,
xi+1 − xi = h, then the continuity equations for the diffusion flux become
λi = 1

2 (ui−1/2 + ui+1/2), and for the convective flux λ̂i = h
4 (f (ui+1/2) −

f (ui−1/2)). First, observe that the trace of u between the neighboring cells
Ii−1 and Ii is the average value of u on adjacent sides. Second, one should
note that the Lagrange multiplier introduced to relax the continuity of p̂h

across interelement boundaries can be rewritten as λ̂i 
 h2

4
∂f (u)

∂x
|xi

.

4.2 DMH2

Many finite volume schemes can be derived from the dual mixed and hybrid
finite element method 2 by using the same techniques as in the previous
section. First, we recall the equations which allow us to exhibit the expression
of the numerical scheme:

∫
Ii

un+1
h − un

h

�t
vh dx +

∫
Ii

dp̂h

dx
vh dx = 0 ∀vh ∈ M1h,∫

Ii

p̂h qh dx =
∫

Ii

f (uh) qh dx + (
λ̂i+1 qh(x

−
i+1) − λ̂iqh(x

+
i )

) ∀qh ∈ Xh,

for 0 ≤ i ≤ N . To these equations are added the jump conditions (RH). If
we use the trapezoidal quadrature formula, we get:

un+1
i+1/2 − un

i+1/2

�t
+ 2

(λ̂i+1 + λ̂i)

h2
i

= 0,(
2

hi−1
+ 2

hi

)
λ̂i = f (ui+1/2) − f (ui−1/2) − ai(ui+1/2 − ui−1/2),

0 ≤ i ≤ N.

In particular, different convective fluxes for the left and right cells at the
interface xi are obtained:

α̂−
i = hi−1f (ui−1/2) + hif (ui+1/2)

hi−1 + hi

− ai

hi−1

hi−1 + hi

(ui+1/2 − ui−1/2),

(11)

and

α̂+
i = hi−1f (ui−1/2) + hif (ui+1/2)

hi−1 + hi

+ ai

hi

hi−1 + hi

(ui+1/2 − ui−1/2),

(12)
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for 0 ≤ i ≤ N . It is important to note that the numerical fluxes used in the
FV methods at xi are our upstream fluxes Fi = α−

i (we always assume that
ai ≥ 0, i.e., xi is the upstream boundary of Ii). Then, we can generalize the
above formulation by taking an approach inspired by the upwind method
(see [59]). It consists in considering the values of the flux p̂h at xi as a
convex combination of the upstream fluxes p̂h(x

−
i ) and the downstream

fluxes p̂h(x
+
i )

(
p̂h(x

±
i ) = α̂±

i

)
:

p̂h(xi) =


1 + β

2
p̂h(x

−
i ) + 1 − β

2
p̂h(x

+
i ) if ai > 0,

1 − β

2
p̂h(x

−
i ) + 1 + β

2
p̂h(x

+
i ) if ai < 0,

(13)

where β ∈ [0, 1] is the upwinding parameter, with ai > 0 (resp. < 0) if xi is
the upstream (resp. downstream ) boundary of Ii . Consequently, by means
of (13), we also obtain the local conservativity of the scheme. Then, we
replace, in each Ii ,

∫
Ii

dp̂h

dx
vh dx by (

1+β

2 p̂h(x
−
i+1) + 1−β

2 p̂h(x
+
i+1))vh|x−

i+1
−

(
1+β

2 p̂h(x
−
i ) + 1−β

2 p̂h(x
+
i ))vh|x+

i
for all vh ∈ M1h.

Remark 4 By again denoting the unknown in Ii by ui+1/2, and using the
same notation as above, the general finite volume scheme obtained from the
association of (11), (12) and (13) with β = 1, is:

hi

un+1
i+1/2 − un

i+1/2

�t

+ hi+1

2

f (ui+3/2) − f (ui+1/2)

hi+ 1
2

+ hi

2

f (ui+1/2) − f (ui−1/2)

hi− 1
2

− ai+1
hi

2

ui+3/2 − ui+1/2

hi+ 1
2

+ ai

hi−1

2

ui+1/2 − ui−1/2

hi− 1
2

= 0,

whereas the choice of β = 0 (as well as ai = 0) gives the centered scheme.

Remark 5 If we consider a spatial mesh with a constant step size, i.e., h =
xi+1 − xi , thanks to the jump condition we can obtain

λ̂i = h

4

[(
f (ui+1/2) − f (ui−1/2)

) − ai(ui+1/2 − ui−1/2)

]
.

Hence, we can state that the Rankine-Hugoniot jump condition at xi is
recovered in the expression of the Lagrange multiplier.

Note that the elimination of the Lagrange parameter λ̂ implies the lack
of smoothing in the resulting finite volume scheme.
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Many choices of speed ai are possible. We can take

ai =
∣∣∣∣f ′

(
ui−1/2 + ui+1/2

2

) ∣∣∣∣
as a local speed at xi , which suggests the following numerical flux for the
Burgers equation

α̂−
i = hi−1u

2
i−1/2 + hiu

2
i+1/2

2(hi−1 + hi)
− |ui | hi−1

hi−1 + hi

(ui+1/2 − ui−1/2),

where ui = 1
2 (ui−1/2 + ui+1/2).

We can also take ai = max(|f ′(v)|) over all v between ui−1/2 and
ui+1/2, and in the special case of convex flux f , this is further simplified:
ai = max(|f ′(ui−1/2)|, |f ′(ui+1/2)|). This last choice results in Rusanov’s
method which is often called the local Lax-Friedrichs method (LLF). Ano-
ther related method is that of Murman, where ai is given at xi by

ai =
∣∣∣∣f (ui+1/2) − f (ui−1/2)

ui+1/2 − ui−1/2

∣∣∣∣.
Unlike the LLF scheme, solutions generated with this method may fail to
satisfy the entropy condition.

Many numerical fluxes are written in the form (11). See, for example, Le
Roux [47] or LeVeque [49,50]. Without loss of generality, we concentrate
only on a uniform spacial mesh, i.e., h = xi+1 − xi (constant step size).
Below we show the relationships between the various choices of the local
speed ai and the standard finite volume schemes.

• The second-order central differencing scheme:

ai = 0.

• The first-order upwind scheme:

ai =



∣∣∣∣∣f (ui+1/2) − f (ui−1/2)

ui+1/2 − ui−1/2

∣∣∣∣∣ if ui+1/2 − ui−1/2 �= 0,

∣∣∣∣∣∂f (u)

∂u

∣∣∣∣∣ otherwise.
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• Lax-Friedrichs scheme:

ai = max
(|f ′

(v)|),
where the maximum is taken over the whole region in which ui−1/2, ui+1/2

varies, i.e., in
[
inf u0(x), sup u0(x)

]
, where u0(x) is again the initial fun-

ction. In the linear case
(
f (u) = au

)
, we recover the Lax-Friedrichs

scheme by setting ai = h
�t

.

• Lax-Wendroff scheme:

ai = �t

h

(
f ′(ξi)

)2
,

where {
ξi ∈ I (ui−1/2, ui+1/2) and satisfies

f (ui+1/2) − f (ui−1/2) = (ui+1/2 − ui−1/2)
∂f

∂u
(ξi).

(14)

• Godunov scheme:

ai = (1 − γ )f ′(ξi+1/4) + γf ′(ξi−1/4),

where γ ∈ [0, 1] is defined by ui+1/2 = (1 − γ )ui + γ ui+1, and{
ξi+1/4 ∈ I (ui, ui+1/2) and satisfies

f (ui+1/2) − f (ui) = (ui+1/2 − ui)
∂f

∂u
(ξi+1/4).

The value ξi−1/4 ∈ I (ui−1/2, ui) is defined in an analogous way.

• Roe scheme:
ai = |AR|i |,

where AR|i = AR(ui−1/2, ui+1/2) is the Roe average, associated to the
Jacobian A of f .

• Engquist-Osher scheme:
The Engquist-Osher method takes the opposite approach to Godunov’s
method in which we always use the shock-wave solution to each Riemann
problem, and always assumes the solution is a “rarefaction wave”. This
can be accomplished by setting∑

i

(
p̂h(x

+
i ) − p̂h(x

−
i )

)
µ =

∑
i

−
( ∫ ui+1/2

ui−1/2

∣∣f ′(v)
∣∣dv

)
µ ∀ µ ∈ M2h.

For the above schemes, see Le Roux [47] or LeVeque [49,50] and re-
ferences. In some forthcoming cases, the trial space (M̃1h) is chosen to
be different from the test space (M1h), i.e., the Petrov-Galerkin DMH
formulation type.
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• Nessyahu-Tadmor (NT) scheme [55]:
Assume that we replace piecewise cell values by piecewise linear MUSCL-
type interpolants

(
M̃1h = { uh ∈ L2(I ); uh|(xi ,xi+1) ∈ P1(Ii), 0 ≤ i ≤

N }). Then at interface xi , we have left and right values from the two linear
approximations in each of the neighboring cells. Denote these values by

u−
i = ui−1/2 + h

2
σi−1/2 and u+

i = ui+1/2 − h

2
σi+1/2,

where σi−1/2 and σi+1/2 are the left and right slopes at cell boundary xi .
If we replace in the second term of the general form (11), ui−1/2 and

ui+1/2 respectively by u−
i and u+

i with ai = h
�t

, this results in a second-
order, non-oscillatory central scheme introduced by Nessyahu and Tad-
mor in [55]:

α̂−
i = f (ui−1/2) + f (ui+1/2)

2
− ai

2
(u+

i − u−
i ), (15)

or equivalently

α̂−
i = f (ui−1/2) + f (ui+1/2)

2
− ai

2
(ui+1/2 − ui−1/2) + hai

4
(σi+1/2 + σi−1/2),

where the reconstruction is based on staggered grids. The numerical flux
is approximated by the second-order midpoint quadrature rule

f (ui+1/2) 
 f
(
u

n+1/2
i+1/2

)
,

and the pointwise values at the half-time steps are evaluated by a Taylor
expansion (for details, see [55]).

• The β scheme [8]:
Here the trial space is M1h, and the left and right control volume boundary
states u−

i and u+
i that are involved in Eq. (15), are computed by using

piecewise linear interpolation formulas:

u−
i = ui−1/2 + h

2

(
(1 − β) σ̃i+1/2 + β σ̃i−1/2

)
, (16)

and

u+
i = ui+1/2 − h

2

(
(1 − β) σ̃i+1/2 + β σ̃i+3/2

)
, (17)

where β is an upwinding parameter that controls the combination of fully
upwind and centered slopes, and σ̃i+1/2 = ui+1/2−ui−1/2

h
denotes the left

slope at cell boundary, xi+1/2.
The β scheme results from the combination of (15), (16) and (17), with

the speed at xi computed as ai = δ
∣∣f ′(ui−1/2+ui+1/2

2

)∣∣. Note that the role
of the parameter δ is to minimize the dissipative error; for more details
see [8].
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• Kurganov-Levy scheme [42]:
In a similar way, we can consider u as a piecewise parabolic function here
(instead of the piecewise linear one, employed in the NT scheme), and
we define Pi in each interval Ii , by Pi(x) = Ai + Bi(x − xi+1/2) +
1
2Ci(x − xi+1/2)

2, where the values of Ai , Bi and Ci are

Ai = ui+1/2 − wc

12
(ui+3/2 − 2ui+1/2 + ui−1/2),

Bi = 1

h

[
wr(ui+3/2−ui+1/2)+wc

ui+3/2 − ui−1/2

2
+wl(ui+1/2−ui−1/2)

]
,

Ci = wc

ui−1/2 − 2ui+1/2 + ui+3/2

h2
,

where the weights wl , wc and wr (wi ≥ 0∀i ∈ {l, c, r}, and
∑

i wi = 1),

are defined in [42].
The left and right intermediate values u−

i and u+
i of u(x, tn) at xi are

obtained as u−
i := Pi−1(x

−
i ) and u+

i := Pi(x
+
i ). Therefore, a similar

approach leads to the third-order scheme

α̂−
i = f (u−

i ) + f (u+
i )

2
− ai

2
(u+

i − u−
i ),

which is based on the reconstruction CWENO (the expression of the speed
ai at node xi is given in [42]).

We note that the class of schemes (11) has been studied in Le Roux [45,
46], where they are derived from finite difference methods. In particular, we
can find there the proof of the following result.

Theorem 6 Let M = sup
u,x,t

{∣∣∣∂f
∂u

(u, x, t)

∣∣∣} be the uniform Lipschitz constant

of f with respect to the variable u, and let the initial data u0 be in the space
L∞(R) ∩ BVloc(R). If the stability condition (CFL) M �t

h
≤ 1 is satisfied,

and if for all h > 0 the choice of the coefficients ai is such that

∀ i ∈ Z, ∀ n ≤ N,
∣∣f ′(ξi)

∣∣ ≤ ai ≤ h

�t
,

is defined by (14), then the family of approached solutions {uh}h>0 contains
a subsequence in L1

loc(R×]0, T [) that converges to the weak solution u of
(5) where u ∈ L∞(R×]0, T [) ∩ BVloc(R×]0, T [).
Note that the scheme with a local propagation speed ai = |f ′(ξi)| (see the
above theorem) can sometimes give weak solutions that fail to satisfy the
entropy condition (see [46]).



18 M. Fortin, A. Serghini Mounim

5 Stabilization of scheme 1 with the flux-limiter method

A rigorous theoretical demonstration of TVD properties of the scheme, i.e.,
∞∑

i=−∞

∣∣un+1
i+1 − un+1

i

∣∣ ≤
∞∑

i=−∞

∣∣un
i+1 − un

i

∣∣,
once we have applied the flux-limiter method, is delicate because the scheme
is vectorial and implicit. Nonetheless, we can use the following strategy to
stabilize the scheme.

We have seen the fact that imposing continuity to convective flux yields
a conservative central scheme and second-order spatial accuracy, but this
also where problems arise. Since continuity was imposed with a Lagrange
multiplier λ̂, it is obvious that the flux must be controlled when necessary,
especially if we do not want the scheme to amplify extreme points of the
solution or to create new ones. What we now try to show is that the standard
flux limiter schemes correspond to a relaxation of the continuity properties of
the flux at interfaces, by imposing a constraint on the Lagrange multiplier. To
simplify recall Remark 3, where we observed that λ̂i = ah

4 (ui+1/2 −ui−1/2)

if we assume f (u) = au, a > 0 (obviously, a similar method can be defined
when a < 0).

This is so that we can write the numerical convective flux p̂, at the node
xi+1 considered as downstream of the interval Ii , as (as in Sect. 4, we use
the trapezoidal quadrature formula to diagonalize the local mass matrix),

p̂i+1 = f (ui+1/2) + gi+1,

in which gi+1 = 2
h
λ̂i+1 is interpreted as an anti-diffusive flux, insuring

continuity of the convective flux at downstream. We have seen as well that
it approximates

h

2

∂f (u)

∂x

∣∣∣∣
xi+1

,

and thus, from ∫
Ii

dp̂h

dx
dx = 2

(λ̂i+1 + λ̂i)

hi

,

it cancels the first-order error. In order to achieve a second-order accurate
scheme which satisfies the TVD condition, one needs to correct the flux.
In fact, it is necessary to limit the anti-diffusive flux. For this purpose, we
define in a classical way

g̃i+1 = B(gi+1, gi)

where B is a function that satisfies the condition

B(r, r) = r.
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A standard choice is the minmod function

B(r, s) =
 0 if r and s have opposite signs,

r if |r| ≤ |s| and r and s have the same sign,
s if |s| ≤ |r| and r and s have the same sign.

Alternative flux limiter functions were studied by Roe [61] and
Sweby [67] using the ratio of consecutive gradients λ̂,

θi = ui+1/2 − ui−1/2

ui+3/2 − ui+1/2
= λ̂i

λ̂i+1

.

Then one can set
B(gi+1, gi) = φ(θi)gi+1,

where the function φ satisfies the symmetry condition

φ(θ) = θφ

(
1

θ

)
and

φ(1) = 1.

If λ̂i λ̂i+1 ≤ 0 or θi ≤ 0, we are in the presence of spurious oscillations
near ui+1/2, and one takes g̃i+1 = 0 or, if we want less diffusion, we set
B(gi+1, gi) = (1−β)gi + βgi+1 (0 ≤ α ≤ 1 is the upwinding parameter).
For the flux limiter �i = φ(θi), we choose the standard ones in the literature
(see Sect. 7), and we set g̃i+1 = �igi+1.

5.1 Hybrid scheme

Along the same lines, we can define a novel scheme in two steps. This
hybrid scheme consists in combining two schemes of first- and second-
order accuracy. Hence, in smooth regions the high order scheme is used to
guarantee the maximum order of accuracy. However, in the presence of large
gradients or discontinuities, this reconstruction switches to one of the first-
order (the low order flux is favored). Finally, the procedure is as follows.
The passage from the solution un at the time level tn = n�t to the solution
un+1 at the time level tn+1 = (n + 1)�t , where �t again designates the
time step, is made in two steps.

• First, we apply the upwind scheme. In particular, we obtain un+1/2 and
λ̂I .

• In the second and final step, we use the centered scheme, with un+1/2 as
initial data. Here λ̂I is preferred to λ̂S when necessary (i.e., λ̂i λ̂i+1 ≤ 0),
as explained above, and reciprocally. We denote the final solution by un+1,
where we have used the notation:
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– λ̂I and λ̂S are the resulting fluxes.
– λ̂I : low order flux with the upwind scheme.
– λ̂S : high order flux with the centered scheme.
The fact that the continuity of fluxes has been sacrified implies that the
conservativity of finite volume schemes is not as good as what is usually
stated. What is conserved is a modified flux, and not the flux itself.

Finally, it is important to observe that the fact of introducing the La-
grange multiplier to relax the continuity of p̂ at the cell interfaces, is the
source of the following features.
– Relationship with the finite volume method.
– Local conservativity of the scheme.
– Stabilization via the upwind and the flux limiter methods.
– Advantage that no (approximate) Riemann solvers are required.

6 Discussion on DMH 2

1 The extension to a system of equations can be carried out with the aid of
Roe’s construction [62]. The local speed ai(ui−1/2, ui+1/2)

(
f (ui+1/2) −

f (ui−1/2) = ai(ui+1/2 − ui−1/2)
)
, is replaced by the corresponding ma-

trices Â(ui−1/2, ui+1/2) (the Rankine-Hugoniot conditions are a system
of N equations). Here Â is the matrix which approximates the Jacobian
matrix ∂f /∂u, and which satisfies

Â(ui−1/2, ui+1/2)(ui−1/2, ui+1/2) = f (ui+1/2) − f (ui−1/2),

with f being a N -component flux vector. Then, Â(ui−1/2, ui+1/2) is expan-

ded in terms of the eigenvectors of Â(ui−1/2, ui+1/2), and a contribution
to the dissipation term is formed by multiplying each eigenvector by a
coefficient with a magnitude not less than that of the corresponding ei-
genvalue. Shortly, we will replace ai(ui−1/2, ui+1/2) by �i |�i |�−1

i , where
|Â| = �|�|�−1; here, � denotes the matrix of the right eigenvectors of Â
and � the diagonal matrix of the eigenvalues of the system.

2 The extension to a convection-diffusion equation can be performed as
follows.

The idea is that the equation

∂u

∂t
+ ∂

(
f (u)

)
∂x

= 0, (18)

arises by assuming that the viscous term in the equation

∂u

∂t
+ ∂

(
f (u)

)
∂x

= ν
∂2u

∂x2
, (19)
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is small, and then setting it to zero. It is well-known that the weak solution
of (18) with the initial condition

u(x, 0) =
{

uL if x < 0,

uR if x > 0,

is the u(x−st) step function whose discontinuity propagates with speed s.
This solution is to be regarded as a solution of (18) provided the viscous
equation (19) has a traveling-solution u(x − st) with lim

χ−→±∞ u(χ) =
uR,L, lim

χ−→±∞ u′(χ) = 0 (u((x − st)/ν) converges to u(x − st) as ν → 0,

the viscosity tends to zero), and the shock waves u(x − st) are limits of
traveling-wave solutions of (19) as ν → 0 (the vanishing weak solution).
In other words, the solutions to the general initial value problem of the
viscous conservation laws converge, in the zero dissipation limit, as ν

goes zero, to the solutions of the hyperbolic conservation laws. Further, we
recover, when ν is near 0, the Rankine-Hugoniot jump condition f (uR)−
f (uL) − s(uR − uL) = 0.

Consider now the convection-diffusion equation

∂u

∂t
+ ∂

(
F(u)

)
∂x

= 0 ∀x ∈ R × (0, +∞),

where the general flux consists of convection and diffusion fluxes

F(u) = f (u) − ν
∂u

∂x
.

If the trajectory of a shock � is determined by x(t), we have at the limit
(ν −→ 0)

[
F(u)

] = s[u], s = dx

dt
is the shock speed,

where [u] = u
(
x(t)+, t

) − u
(
x(t)−, t

)
, and

[
F(u)

] = F
(
u(x(t)+, t)

) −
F

(
u(x(t)−, t)

)
stand for the jumps of u and F(u) across the shock �.

Moreover, we set P̂h = −ν ∂uh

∂x
+ f (uh) (the general numerical flux),

and we have the discrete problem:
find (

uh(t), λ̂(t)
) ∈ M1h × M2h, and P̂h(t) ∈ Xh
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such that:∫
I

∂uh

∂t
vh dx +

∑
Ii

∫
Ii

dP̂h

dx
vh dx = 0 ∀vh ∈ M1h,

∫
I

P̂h.q
h
dx =

∑
Ii

∫
Ii

νuh

dqh

dx
dx +∑

Ii

∫
Ii

f (uh)qh dx −
∑

i

(
λi+1qh(x

−
i+1) − λiqh(x

+
i )

) ∀qh ∈ Xh,

∑
i

[P̂h] µh =
∑

i

ai[uh] µh ∀µh ∈ M2h,

where again [Ph] = P +
h − P −

h , [uh] = u+
h − u−

h , and ai denotes the appro-
ximation of the local speed at xi .

7 Numerical results

In this section, we use two one-dimensional model problems to test our
schemes numerically. The aim here is to show the feasibility of the methods.

Example 7 (Transport equation and propagation of singularities.) We solve
the model advection-diffusion equation

ut + ux = ν(ux)x, 0 ≤ x ≤ 1,

subject to initial data u(x, 0) = u0(x). Here, we consider the discontinuous
characteristic function, u0(x) = χ0 = I(0.11111,0.4), with diffusion parame-
ter ν = 10−16(ν −→ 0) and boundary conditions u(0, t) = u(1, t) =
0.1. With such a piecewise constant initial condition, we can easily illu-
strate the dispersive and dissipative character of the many versions of the
scheme.

– In Figs. 1 and 2, the physical and numerical coefficients are chosen to be
those given in the table below.

Figure Mesh points Iterations CFL

a 100 26 1/3
b 50 26 1/6
c 75 13 1/2

– In Fig. 1, we observe the good resolution of the computed solution. Note,
in particular, that for α = 1 the scheme is still compressive.
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Fig. 1. Upwind scheme

Fig. 2. Hybrid scheme
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– The results of the hybrid scheme are presented in Fig. 2, associated with
the implicit Euler method. It shows the possibility of using the flux-limiter
method as a stabilizer method, and also the efficiency of the scheme to
capture the discontinuities and shocks.

– In Figs. 3, 4, . . . , 10, the calculations were carried out on a uniform grid of
75 mesh points, with time step size chosen as CFL = 0.5 and 13 iterations.
The temporal approximation used is the implicit Euler method combined
with standard flux limiters. In the presence of spurious oscillations we use
two strategies to modify the “flux” λ (shock or discontinuity detector):

abandoned continuity: we set λ̂i+1 = 0,

relaxed continuity: we set λ̂i+1 = (1 − β)λ̂i + βλ̂i+1.

Lastly, when we modify the flux λ̂, only in presence of oscillations, we
refer to this process as local limiter. We can see the performance of the
flux-limiter method, which confirms our idea of using it as stabilizer me-
thod. The best results are now obtained for the “abandoned continuity”
choice, which have no spurious oscillations near the shock or disconti-
nuity.

Example 8 (Expansion of discontinuity and moving shock.) In the following,
we want to test the validity of the stabilized schemes (upwinding and flux-
limiter methods) on the nonlinear equation. To achieve this, we approximate
solutions to the well-known one-dimensional Burgers equations.

ut + (
u2

2
)x = ν((u)x)x, 0 ≤ x ≤ 1,

with the initial condition of u(x, 0) = u0(x), and where

discontinuity plus shock wave =
 u0 =

{
1 if 0.11111 ≤ x ≤ 0.4
0.1 otherwise

u(0, t) = 0.1, u(1, t) = 0.1.

The exact solution (ν → 0) develops a rarefaction wave with a moving shock
with a velocity of us = uL+uR

2 , where uL and uR are the speed on both sides
of the shock front. For the numerical results, here and below, µ = h

�t

denotes the fixed mesh-ratio in the x-direction. This test case contains both
expansion of discontinuity and propagation of shock. We observe that the
scheme is able to capture the moving discontinuity with a few transition
points, and gives a particularly good representation of the rarefaction wave
(in both stages of the developed rarefaction wave), once we take into account
the simplicity and efficiency offered by our scheme.
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Fig. 3. Flux-limiter: Van Leer relaxed conti-
nuity, β = 5/7

Fig. 4. Flux-limiter: minmod relaxed conti-
nuity, β = 5/7

Fig. 5. Flux-limiter: Chakravarty relaxed
continuity, β = 5/7

Fig. 6. Flux-limiter: local relaxed continuity,
β = 5/7

Fig. 7. Flux-limiter: Van Leer abandoned
continuity

Fig. 8. Flux-limiter: minmod abandoned
continuity
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Fig. 9. Flux-limiter: Chakravarty abandoned
continuity

Fig. 10. Flux-limiter: local abandoned con-
tinuity

Fig. 11. Upwind scheme, Burgers µ =
0.1, h = 0.01, 100 iterations

Fig. 12. Upwind scheme, Burgers µ =
0.5, h = 0.01, 20 iterations

Fig. 13. Upwind scheme, Burgers µ =
0.5, h = 0.02, 75 iterations

Fig. 14. Upwind scheme, Burgers µ =
0.5, h = 0.01, 150 iterations
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Fig. 15. Flux-limiter Van Leer, abandoned
continuity, same parameters as Fig. 14

Fig. 16. Flux-limiter local limiter, abando-
ned continuity, same parameters as Fig. 14
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